

Seasonal Variation and Health Risk Assessment of Polycyclic Aromatic Hydrocarbons in Miaoli City, Taiwan

C. C. Wu · T. S. Lin · T. T. Yang · H. W. Hsu ·
C. L. Chang · C. H. Huang · W. Y. Lin

Received: 23 June 2011/Accepted: 24 October 2011/Published online: 3 November 2011
© Springer Science+Business Media, LLC 2011

Abstract The ambient PAHs levels in the downtown area of a traditional small city were analyzed for winter and summer seasons. A total of 16 PAHs in gaseous and particulate phase were quantified. The average gaseous PAHs were $2,189 \pm 1,194$ and 623.8 ± 545.1 ng/m³ in winter and summer seasons, respectively. For the PAHs in particulate phase, they were 40.32 ± 12.15 and 11.99 ± 5.63 ng/m³ in winter and summer seasons, respectively. These values were comparable to those reported for large cities or even higher. The estimated BaPeq was 12.32 ± 6.34 ng/m³. As low-molecular-weight PAHs primarily existed in gaseous phase, high-molecular-weight PAHs in particulate phase became a significant fraction of total particulate phase PAHs. Particulate phase PAHs was significantly inversely associated with the ambient temperature for each individual PAHs species. However, this relationship did not exist for high-molecular-weight PAHs in gaseous phase. The results indicated the photo-degradation of high-molecular-weight PAHs should warrant a further thoughtfully investigation.

Keywords Polycyclic aromatic hydrocarbons (PAHs) · Seasonal variation · Total suspended particles (TSP) · Miaoli city

Polycyclic aromatic hydrocarbons (PAHs) are released into the environment because of incomplete combustion of fossil fuels. Some PAHs are carcinogenic and mutagenic to human beings (ATSDR 1995). Thus their levels in the ambient air are of crucial concerns. These compounds are formed with more than 2 benzene rings and classified as persistent organic compounds (ATSDR 1995). High-molecular-weight PAHs, such as benzo[a]pyrene, benzo [b]fluoranthene, and benzon[ghi]pyerylene, primarily exist in particulate phase in the atmosphere because of their low vapor pressure. By contrast, low-molecular-weight PAHs with higher vapor pressure are predominant in gaseous phase.

The measurements of ambient PAHs have been conducting since the 1970s from the developed countries to Asia countries (Fang et al. 2004; Hien et al. 2007; Lu et al. 2007; Motelay-Massei et al. 2005; Valerio and Lazzarotto 1985; Ruchirawat et al. 2007). The ambient PAHs levels reported varied because of meteorological conditions and sampling locations. In general, their levels are higher in industrial areas than those in non-industrial areas, and higher in urban than those in suburban (Fang et al. 2004). In addition, their levels are usually higher in winter than those in summer (Ma et al. 2011) owing to their photo-degradation (Hien et al. 2007; Lu et al. 2007; Valerio and Lazzarotto 1985). However, most of studies have been focusing on industrial regions and large cities.

In Taiwan, there are many traditional small cities with a very high population density in downtown areas. In general, the public transportation is always inconvenient in

C. C. Wu
Department of Public Health, China Medical University,
Taichung, Taiwan

T. S. Lin (✉) · H. W. Hsu · W. Y. Lin
Department of Safety, Health, and Environmental Engineering,
National United University, Miaoli, Taiwan
e-mail: tslin@nuu.edu.tw

T. T. Yang · C. L. Chang · C. H. Huang
Department of Environmental Engineering and Health,
Yuanpei University, Hsin-Chu City, Taiwan

these cities and thus the residents must commute with their own vehicles, in particular motorcycles. Traffic is demonstrated the most important source of ambient PAHs in urban (Olson and McDow 2009). In addition, these small cities usually have a canyon-like condition in their downtown areas. This study therefore aimed to investigate the ambient PAHs levels in a small city, both in gaseous and particulate phase, and their potential health risk.

Materials and Methods

Miaoli city is a small traditional city in Taiwan, with a population of 91,000 and an area of 38 km², where has been classified as a good air quality region because there are very few intensive stationary sources and its meteorological condition. Thus, very few data are available on its ambient pollutant levels. This study chose a total of 20 sites locating in the downtown area, because most of its residents live near streets. A total of 35 samples (January, 2010: 20; August, 2010: 15) were sampled during daytime (10 h) for gaseous and particulate phase PAHs to estimate its traffic-related PAHs levels that may represent the residents' exposure to ambient PAHs. These samples were collected at 1.5 m above ground. The particulate PAHs were collected by a 37 mm cassette containing PTFE filter (SKC Inc, PA) at a flow rate of 2,000 mL/min and gaseous PAHs were collected by a XAD-2 tube (SKC Inc, PA) at a flow rate of 200 mL/min with a SKC air sampling pumps (SKC PCXR8, SKC Inc., PA) simultaneously. The sampling flow rates were calibrated by a calibrator (Calibrator 520, SKC Inc., PA) both in the beginning and end of sampling.

The PTFE filters were conditioned at 25 ± 0.2°C and R.H. 30 ± 1% for at least 24 h before weighing. The gaseous PAHs were extracted from XAD-2 by an ultrasonic bath (DC400H; Delta, Taiwan) with 2 mL of dichloromethane (Merck, Germany) for 10 min. The procedure was carried out in dark and repeated for three times to ensure a complete extraction. The extraction procedure for particulate PAHs was briefly described as follows. Each sample was ultrasonically extracted by 40 mL dichloromethane for 1 h and then cleaned with solvent-rinsed glass wool (Sigma-Aldrich, USA) and concentrated to about 0.5 mL. Finally, the internal standards was added (Supelco, USA), and solution volume was adjusted to 1 mL with pure dichloromethane.

Sixteen organic PAH pollutants were identified and quantified by gas chromatography/mass spectrometry (GC/MS) (GCMS-QP2010; Shimadzu, Japan). The GC/MS conditions were as follows. Injection mode was splitless with an injection volume of 1 µL. Injection port temperature was 280°C; ion source temperature was 230°C; and

interface temperature was 290°C. The initial temperature of the oven was maintained at 70°C for 3 min, and then increased at 10°C/min to 300°C and maintained at 300°C for 20 min. Analysis was conducted in selective ion monitoring (SIM) mode. The standards of the 16 organic PAH compounds (Naphthalene (Nap), Acenaphthylene (AcPy), Acenaphthene (Acp), Fluorene (Flu), Phenanthrene (Phen), Anthracene (Ant), Fluoranthene (FL), Pyrene (Pyr), Benzo[a]anthracene (BaA), Chrysene (Chr), Benzo[b]fluoranthene (BbF), Benzo[k]fluoranthene (BkF), Benzo[a]pyrene (BaP), Indeno[1,2,3-cd]pyrene (INP), Dibenz[a,h]anthracene (DBA), and Benzo[g,h,i]perylene (BghiP) (AccuStandard, USA) with 5 internal standards (Naphthalene-D8, Acenaphthene-D10, Phenanthrene-D10, Chrysene-D12, Perylene-D12) were analyzed in the 5–800 ng/mL range to establish standard calibration curves to determine the concentrations of these 16 PAHs collected. All correlation coefficients for calibration curves were >0.995. Instrument detection limits were 2.06 × 10⁻⁴–2.76 × 10⁻³ ng, determined by threefold standard deviation of seven measurements of the lowest concentration of a calibration curve (Table 1). An appropriate amount of PAHs was added to clean blank filters and XAD2 tubes, respectively, to estimate the recovery of extractions. Mean recoveries for all compounds in gaseous and particulate phase were 62.5%–84.2% and 69.0%–95.2%, respectively. In order to estimate potential contamination during sampling, transport, storage and extraction; field blanks were conducted and analyzed. In addition, we also analyzed reagent and lab blanks. All blanks were well below detection limits.

Data analysis was conducted by IBM SPSS 18. The ambient PAHs levels in winter and summer were compared with one-way ANOVA. The correlations between variables were estimated by general linear models and simple regression models.

Results and Discussion

The ambient levels of gaseous and particulate phase PAHs were 2,189 ± 1,194 and 40.32 ± 12.15 ng/m³ in winter, and 623.8 ± 545.1 and 11.99 ± 5.63 ng/m³ in summer, respectively. The total PAHs concentration in winter (2,230 ng/m³) was much higher than that in summer (635.9 ng/m³), and the individual PAH levels were detailed in Table 2. The gaseous PAHs with low-molecular-weight (2, 3-rings) were the dominant species both in winter (86.0%) and summer (95.1%) seasons. On the other hand, the particle PAHs with 2,3-ring were 43.9 and 52.0% for winter and summer, respectively. In addition, the ratio of gaseous/particulate PAHs with smaller molecular weight (less than 5-ring, except for AcPy) in winter (ranging from

Table 1 Recovery of Spiked Samples (n = 3) and Instrument Detection Limits of 16 PAHs (n = 7)

Compound	XAD-2 (%)	PTFE filter (%)	Detection limit (ng)
NaP	62.5 ± 7.9	69.9 ± 19.4	1.19 × 10 ⁻³
AcPy	62.2 ± 2.8	69.0 ± 7.2	2.53 × 10 ⁻⁴
tAcp	63.6 ± 2.5	70.7 ± 7.0	1.14 × 10 ⁻³
Flu	67 ± 2.6	74.6 ± 12	4.02 × 10 ⁻⁴
Phen	77.5 ± 12.4	81.4 ± 12.0	2.06 × 10 ⁻⁴
Ant	78.1 ± 12.7	86.3 ± 13.3	3.74 × 10 ⁻⁴
FL	79.1 ± 12.8	78.4 ± 15.2	3.36 × 10 ⁻⁴
Pyr	78.6 ± 12.5	77.4 ± 14.2	7.75 × 10 ⁻⁴
BaA	82.8 ± 12.5	83.9 ± 17.0	7.92 × 10 ⁻⁴
Chr	78 ± 11.2	75.1 ± 14.3	1.04 × 10 ⁻³
BbF	83.5 ± 13.2	88.2 ± 7.3	1.31 × 10 ⁻³
BkF	82.1 ± 13.1	88.8 ± 5.7	1.51 × 10 ⁻³
BaP	84.2 ± 13.8	92.5 ± 8.4	1.83 × 10 ⁻³
IND	82.6 ± 11.1	95.2 ± 5.4	1.58 × 10 ⁻³
DBA	81.7 ± 11.6	90.3 ± 5.3	1.44 × 10 ⁻³
B(ghi)P	78.3 ± 9.1	84.2 ± 5.0	2.76 × 10 ⁻³

9.5 to 724.0 ng/m³) was significantly higher than that in summer (range: 3.8–463.3 ng/m³). By contrast, the ratio of gaseous/particulate PAHs with a high-molecular-weight (\geq 5-ring) was greater in summer. These phenomena may be a result of more incomplete combustion occurring during motor vehicular cold start during winter than that during summer. The ambient gaseous PAHs in Miaoli city dominated during winter because this city located in subtropics and the temperature was 20.3 ± 2.4°C during the sampling period. In addition, a higher ambient temperature (29.5 ± 0.8°C) during summer may result in more vaporization of PAHs with higher molecular weight from particle matter.

The photolysis of PAHs in aerosol is demonstrated (Hien et al. 2007; Lu et al. 2007; Valerio and Lazzarotto 1985) and may accelerate at a higher temperature (Kishida et al. 2009). The half-life of PAHs in aerosol is associated with their molecular weight; in general, a shorter half-life was observed for heavier PAHs (Lu et al. 2007). For example, the half-life of BkF, BaP, IND, DBA and BghiP was shorter than 1 h where the half-lives of Flu, Phen, Pyr were 3.61, 4.62 and 2.63 h, respectively (Lu et al. 2007). Our linear regression models indicated that the particulate phase PAHs concentrations were all significantly inversely associated with temperature with an exception of Nap. These results imply the photolysis of ambient PAHs in aerosol would occur. However, only Phen, Ant, FL, Pyr in gaseous phase were still significantly inversely associated with temperature in our regression models. Thus, the decrease of particulate phase PAHs with higher molecular weight might not be completely photo-degraded, some might just evaporate to gaseous phase. In fact, among BkF, Bap, IND, DBA, BghiP, only total IND

(gaseous + particulate phase IND) was significantly inversely associated with temperature. Hence, the photolysis of gas PAHs with greater molecular weight may warrant further studies to explain their environmental fate.

Compared with the reported data for ambient PAHs levels (Table 3), our results were higher with an exception for those collected near highways. The higher observations may be a result of our samples collected during daytime, so a greater traffic density would be expected than that for a 24 h sampling period. Secondly, the population density of Miaoli city was comparable to big cities. Third, motor vehicle, especially motorcycles, was the most important transportation for residents in Miaoli city. Forth, our samples were collected at 1.5 m height from ground on canyon-like streets; while some studies collected their samples at 10 m height from ground (Fang et al. 2004). It's noteworthy that these values were comparable to or even higher than those measured in some industrial areas (Fang et al. 2004). For example, a total of 21 PAHs was 1,605 ng/m³ in an industrial area of Taichung city in Taiwan (Fang et al. 2004) which was significantly lower than our values of winter (2,230 ng/m³). This may be resulted from our canyon-like sampling sites.

The sources of ambient PAHs may be identified by some specific PAH ratios. For the combustion of gasoline and diesel, the ratios of FL/(FL + PYR) and IND/(IND + BghiP) are 0.4–0.5 and 0.2–0.5, respectively (Yunker et al. 2002). In addition, the ratio of PYR/BaP can be used to identify the source of gasoline or diesel driven vehicles, and they are 2–120 and 50–100, respectively (Masclet et al. 1986). The average ratio FL/(FL + PYR) for gaseous, particulate phase and total PAH were 0.46, 0.85, and 0.76, respectively. The average ratio IND/

Table 2 Ambient Gaseous and TSP-PAHs concentrations in Maioli City (ng/m³)

Compounds	Winter (n = 20)			Summer(n = 15)		
	Gaseous PAHs	Particle-bounds PAHs	Σ PAHs	Gaseous PAHs	Particle-bounds PAHs	Σ PAHs
(Nap)	1,683 ± 1,143	2.80 ± 1.59	1,685 ± 1,142	569.3 ± 522.7*	1.85 ± 1.11*	571.1 ± 522.4*
(AcPy)	18.27 ± 29.30	0.99 ± 0.51	19.27 ± 29.30	4.40 ± 5.56	0.16 ± 0.20*	4.21 ± 5.65
(Acp)	24.90 ± 58.54	1.73 ± 1.80	26.63 ± 58.58	4.02 ± 5.16	0.75 ± 0.41*	4.78 ± 5.16
(Flu)	38.99 ± 85.71	2.85 ± 0.86	41.84 ± 85.63	8.77 ± 10.41	1.00 ± 0.39*	9.80 ± 10.52
(PA)	34.36 ± 17.40	4.11 ± 1.82	38.47 ± 17.80	4.33 ± 3.26*	1.55 ± 0.34*	5.88 ± 3.17*
(Ant)	87.88 ± 59.98	5.22 ± 2.26	93.09 ± 59.09	3.82 ± 0.99*	1.03 ± 0.71*	3.80 ± 3.79*
(FL)	85.91 ± 93.62	3.47 ± 1.84	89.38 ± 92.83	0.96 ± 0.64*	0.53 ± 0.29*	1.50 ± 0.69*
(Pyr)	80.05 ± 92.26	2.38 ± 2.04	82.44 ± 91.69	2.36 ± 2.08	1.32 ± 0.40	3.67 ± 2.02*
(BaA)	40.22 ± 151.8	1.52 ± 0.69	41.74 ± .151.65	3.02 ± 1.94*	0.61 ± 0.43*	3.66 ± 1.86
(CHR)	35.90 ± 110.6	2.01 ± 1.72	37.91 ± 110.4	1.40 ± 1.14	0.61 ± 0.44*	2.04 ± 1.03*
(BbF)	10.04 ± 19.53	1.84 ± 0.60	11.88 ± 19.52	1.40 ± 1.14*	0.52 ± 0.99*	4.26 ± 3.57
(BkF)	14.41 ± 23.74	1.90 ± 0.84	16.31 ± 23.77	2.59 ± 2.81*	0.36 ± 0.52*	2.97 ± 2.79*
(BaP)	10.56 ± 15.36	2.04 ± 0.82	12.60 ± 15.38	5.58 ± 5.33	0.37 ± 0.53*	5.96 ± 5.22
(IND)	9.49 ± 25.07	3.55 ± 1.62	13.04 ± 25.36	3.29 ± 2.75	0.35 ± 0.70*	3.65 ± 2.84*
(DBA)	7.54 ± 17.28	1.34 ± 0.41	8.88 ± 17.28	3.77 ± 3.55	0.39 ± 0.55*	4.18 ± 3.47
B(ghi)p	8.09 ± 12.53	2.54 ± 1.00	10.62 ± 13.05	3.86 ± 2.86	0.58 ± 1.29*	4.46 ± 2.88*
Σ 2,3-ring PAHs	1,887 ± 1,212	17.71 ± 6.30	1905 ± 1212	593.2 ± 539.1	6.29 ± 2.24	599.5 ± 538.6
Σ 4-ring PAHs	241.1 ± 393.4	9.39 ± 4.78	251.5 ± 391.5	7.75 ± 3.98	3.11 ± 1.30	10.86 ± 3.47
Σ 5,6-ring PAHs	60.11 ± 88.18	13.22 ± 3.69	73.33 ± 89.25	22.80 ± 9.64	2.69 ± 3.71	25.49 ± 9.02
Σ 16-PAHs	2,189 ± 1,194	40.32 ± 12.15	2230 ± 1196	623.8 ± 545.1	11.99 ± 5.63	635.89 ± 544.79
Σ BaPeq	28.31 ± 37.80	4.32 ± 0.96	32.68 ± 37.76	11.30 ± 6.53	1.02 ± 0.86	12.32 ± 6.34
Cancer Risk	3.1×10^{-5}	4.8×10^{-6}	3.6×10^{-5}	2.3×10^{-5}	3.2×10^{-6}	1.4×10^{-5}

* ΣPAHs = gaseous PAH + particle-PAH

(IND + BghiP) for gaseous, particulate phase and total PAH were 0.41, 0.95, and 0.95, respectively. The average ratio PYR/BaP for gaseous, particulate phase and total PAH were 23, 44, and 79, respectively. According to Mioali government's in-time traffic monitoring system, the traffic flow and average speed were obtained for our sampling period. Thus, a linear regression model analysis was conducted to study the relationship between ambient PAHs level and traffic flow. The logarithm transformed value of ambient PAHs concentration was used in these analyses, since the ambient PAHs concentration was log-normal distribution. The results showed the ambient PAHs were significantly influenced by traffic flow. The correlation coefficients for gaseous, particulate and total PAHs, and traffic flow were 0.47 ($p = 0.014$), 0.666 ($p < 0.001$), and 0.47 ($p = 0.013$), respectively. Based on these phenomena, the gasoline driven vehicles, in particular motorcycle, were recognized as the predominant source of ambient PAHs for Miaoli city.

Because each PAH species does not pose similar toxicity and health risk, the total ambient PAHs cannot be used to estimate their potential health risk. Thus

higher ambient PAHs levels do not represent higher health risk. In order to estimate the potential health risk owing to PAHs exposure, BaPeq value was calculated with the potency equivalency factors suggested by Nisbet and LaGoy (1992). The estimated BaPeq values were presented in Table 2. Although the ambient PAHs levels in Miaoli city were higher than that reported in many other cities, the BaPeq values estimated here were not significantly higher because Nap was the predominant PAHs species in Miaoli city, which was much less toxic than BaP. A much higher level of Nap determined here may result from collecting sample at canyon-like street sites.

In conclusion, this study pointed out the ambient PAHs levels in a small traditional city, such as Miaoli city, is comparable to major cities and should not be neglected. The downtown area in such city is usually with narrower streets and intensive activities; more importantly, often with a higher residence density in Taiwan. In addition, a narrow street with high buildings may results in a canyon-like district that may accumulate ambient pollutants and obstruct their diffusion and circulation.

Table 3 Ambient PAHs level in different cities worldwide (ng/m³)

	Sample site	Sampling time	Σg-PAHs	Σp-PAHs	ΣPAHs*	References
Bangkok, Thailand ^a	Urban roadside	8 h		41.14 ± 10.17		Ruchirawat et al. (2007)
	Rural			17.00 ± 0.40		
Beijing, China ^{a,d,f}	Suburb	24 h	5,108	581.7	5,690	Zhang et al. (2009)
			12,505	22.51	12,528	
Northeastern China ^{d,f}	Urban		81–240			Ma et al. (2011)
			13–50			
Raleigh, NC, USA ^{b,c}	Highway roadside 10 m	24 h		467		Olson and McDow (2009)
				319		
	Highway roadside 275 m					
Taichung, Taiwan ^e	Urban		1,070	115	1,220 ± 520	Fang et al. 2004
Taichung, Taiwan	Rural		735	79.1	831 ± 472	
Taichung, Taiwan	Industrial		1,530	122	1,605 ± 1,240	
Ho Chi Minh City, Vietnam ^{a,i,n}	Urban	24 h		4.28 ± 2.83		Kishida et al. (2009)
				5.71 ± 8.21		
Mioali, Taiwan ^{a,d,f}	Urban	10 h	2,189 ± 1,194	40.32 ± 12.15	2,230 ± 1,196	This study
			623.8 ± 545.1	11.99 ± 5.63	635.89 ± 544.8	

* ΣPAHs = Σg-PAHs + Σp-PAHs; ^a TSP; ^b PM_{2.5}; ^c 10PAHs; ^d 16PAHs; ^e 21PAHs; ^f winter; ^g summer

References

ATSDR (1995) Toxicological profile for polycyclic aromatic hydrocarbons. Agency for toxic substances and disease registry, Atlanta

Fang GC, Chang KF, Lu C, Bai H (2004) Estimation of PAHs dry deposition and BaP toxic equivalency factors (TEFs) study at Urban, Industry Park and rural sampling sites in central Taiwan, Taichung. *Chemosphere* 55:787–796

Hien TT, Nam PP, Sadanaga Y, Kameda T, Takenaka N, Bandow H (2007) Comparison of particle-phase polycyclic aromatic hydrocarbons and their variability causes in the ambient air in Ho Chi Minh city, Vietnam and Osaka, Japan, during 2005–2006. *Sci Total Environ* 382:70–80

Kishida M, Mio C, Fujimori K, Imamura K, Takenaka N, Maeda Y, Lan TTN, Shibutania Y, Bandow H (2009) Seasonal changes in the atmospheric concentration of particulate polycyclic aromatic hydrocarbons in Ho Chi Minh city, Vietnam. *Bull Environ Contam Toxicol* 83:747–751

Lu GN, Dang Z, Tao XQ, Yang C, Yi XY (2007) Modeling and prediction of photolysis half-lives of polycyclic aromatic hydrocarbons in aerosols by quantum chemical descriptors. *Sci Total Environ* 373:289–296

Ma W, Qi H, Li Y, Liu L, Sun D, Wang D, Zhang Z, Tian C, Shen J (2011) Seasonal and spatial variations of air concentrations of polycyclic aromatic hydrocarbons in northeastern Chinese urban region. *Bull Environ Contam Toxicol* 86:43–49

Masclet P, Mouvier G, Nikolaou K (1986) Relative decay index and sources of polycyclic aromatic hydrocarbon. *Atmos Environ* 20(3):439–446

Motelay-Massei A, Harner T, Shoeib M, Diamond M, Stern G, Rosenberg B (2005) Using passive air samplers to assess urban-rural trends for persistent organic pollutants and polycyclic aromatic hydrocarbons. 2. Seasonal trends for PAHs, PCBs, and organochlorine pesticides. *Environ Sci Technol* 39:5763–5773

Nisbet C, LaGoy P (1992) Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). *Regul Toxicol Pharmacol* 16:290–300

Olson DA, McDow SR (2009) Near roadway concentrations of organic source markers. *Atm Environ* 43:2862–2867

Ruchirawat M, Settachan D, Navasumrit P, Tuntawiroon J, Autrup H (2007) Assessment of potential cancer risk in children exposed to urban air pollution in Bangkok, Thailand. *Toxicol Lett* 168:200–209

Valerio F, Lazzarotto A (1985) Photochemical degradation of polycyclic aromatic hydrocarbons (PAHs) in real and laboratory conditions. *Int J Environ Anal Chem* 23:135–151

Yunker MB, Macdonald RW, Vingarzan R, Mitchell RH, Goyette D, Sylvestre S (2002) PAHs in the Fraser river basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. *Org Geochem* 33:489–515

Zhang S, Zhang W, Wang K, Shen Y, Hu L, Wang X (2009) Concentration, distribution and source apportionment of atmospheric polycyclic aromatic hydrocarbons in the southeast suburb of Beijing, China. *Environ Monit Assess* 151:197–207